Efemeridy Slunce jsou počítány podle Bretagnonovy teorie pohybu Země kolem Slunce VSOP87. Vzhledem k přesnosti zde publikovaných efemerid jsou uváženy pouze ty periodické členy, jejichž amplitudy převyšují 15 km v heliocentrické poloze Země.
1. Pro každý den v roce jsou publikovány základní efemeridy Slunce. Je uveden den v měsíci a týdnu, juliánské datum a pro 0h terestrického času zdánlivé rovníkové geocentrické souřadnice středu slunečního disku. Pro 0h světového času každého dne je dán zdánlivý hvězdný čas. Pro padesátou rovnoběžku a středoevropský poledník jsou pak pro každý den spočítány okamžiky východu, pravého poledne a západu Slunce a jeho přibližný azimut v okamžiku západu. Západy a východy jsou vztaženy k hornímu okraji Slunce, refrakce při obzoru je uvážena hodnotou 34'. Čas východu, pravého poledne a západu přepočteme pro místo o zeměpisné délce jiné nežli nominálních 15° na východ od základního poledníku tak, že přičteme opravu v minutách, rovnou 4(15°–λ). V případě východu a západu na rovnoběžce jiné než padesáté je třeba připojit ještě další opravu, vypočtenou z přibližného vzorce 6,22(φ–50°)cotg A, jestliže φ značí zeměpisnou šířku ve stupních a A je azimut Slunce v okamžiku jeho západu (je uveden pro každý den v posledním sloupci tabulky). Oprava je dána v časových minutách a k času východu se přičítá, od času západu se odečítá. Tak například pro Brno (λ=16,59°, φ=49,20°) je 1. července 2017 (A = 129°) čas východu Slunce roven 3h55min–6,4min+4,0min = 3h53min a čas jeho západu 20h12min–6,4min–4,0min = 20h02min. Časová rovnice je dána rozdílem hvězdný čas minus rektascenze Slunce plus (nebo minus) 12 hodin.
Dále jsou uvedeny efemeridy pro fyzikální pozorování Slunce, počítané podle elementů určených Carringtonem:
L je heliografická délka středu slunečního disku,
B je heliografická šířka středu slunečního disku,
P je poziční úhel severního konce osy rotace Slunce.
Synodické otočky se počítají průběžně od 9. 11. 1853 a jsou v roce 2017 očíslovány následovně:
Otočka | Začíná v SČ | Otočka | Začíná v SČ | Otočka | Začíná v SČ |
2186 | I. 10,39 | 2191 | V. 26,86 | 2196 | X. 10,01 |
2187 | II. 6,73 | 2192 | VI. 23,05 | 2197 | XI. 6,30 |
2188 | III. 6,06 | 2193 | VII. 20,26 | 2198 | XII. 3,61 |
2189 | IV. 2,37 | 2194 | VIII. 16,48 | ||
2190 | IV. 29,63 | 2195 | IX. 12,73 |
3. Tabulka desetidenních efemerid Slunce a Země obsahuje vždy pro 0h TČ geocentrickou délku Slunce λ pro střední ekvinokcium J2017,0, vzdálenost Země od Slunce v astronomických jednotkách Δ a zdánlivý geocentrický poloměr Slunce ρ. Pro každý pátý den je uvedena rovnice ekvinokcií (což je rozdíl mezi zdánlivým a středním hvězdným časem, a udává tedy vliv nutace zemské osy rotace na pohyb jarního bodu). Počátek a konec astronomického i občanského soumraku je počítán pro padesátou rovnoběžku a středoevropský poledník. Pro místo o jiných zeměpisných souřadnicích je třeba k nim připojit opravu, vypočítanou (podobně jako v případě východu a západu Slunce) ze vzorce
kde azimut západu Slunce A je změněn o korekci ΔA=20°/sinA v případě astronomického a ΔA=6°/sinA v případě občanského soumraku. Horní znaménko platí v případě začátku a dolní v případě konce odpovídajícího soumraku.
Střední elementy Slunce pro 1. I. 2017, 0h TČ
Střední délka | 280,8437°, změna za den 0,985647° |
Střední délka perigea | 283,2297°, změna za den 0,000047° |
Výstřednost dráhy | 0,016701 |
Střední sklon ekliptiky | 23,437068° = 23°26´13,44″ |
Precesní konstanty pro epochu J2017,0
Obecná precese | p= 50,2917″ = 0, 0139699° |
Precese v rektascenzi | m= 46,1264″ = 3, 07509s |
Precese v deklinaci | n= 20,0401″ = 1, 33601s |
Převod rovníkových (α, δ) nebo ekliptikálních (λ, β) souřadnic nebeského tělesa či elementů jeho dráhy vůči ekliptice (délky výstupného uzlu Ω, argumentu perihelia ω a sklonu dráhy i) ze standardní epochy J2000,0 na J2017,0 a naopak je možné provést pomocí transformačních vztahů (ve kterých jsou souřadnice bez indexu dány v soustavě J2017,0, s indexem o v soustavě J2000,0 a s indexem m v soustavě střední epochy, tj. J2008,0). Rovnice je třeba řešit iteracemi (při malém rozdílu epoch postačí dva kroky), neboť souřadnice pro střední epochu nejsou předem známy; v prvním kroku proto místo nich při výpočtu použijeme hodnoty pro epochu J2000,0, ve druhém použijeme aritmetický průměr z hodnoty pro epochu J2000,0 a hodnoty vypočtené v prvním kroku atd...
α = αo + M + N sin αm tg δm
λ = λo + a – b cos(λo + c) tg βo
δ = δo + N cos αm
β = βo + b sin(λo + c)
Ω = Ωo + a – b sin(Ωo + c) cotg io
i = io + b cos(Ωo + c)
ω = ωo + b sin(Ωo + c) cosec io ,
kde
M = 52,274s
N = 22,713s = 340,70″
a = 854,93″
b = 7,99″
c = 5° 10´ 01″
Formálně zcela totožné vztahy platí též mezi souřadnicovými soustavami nové standardní epochy J2000,0 a dříve používané B1950,0, použijeme-li následující číselné hodnoty konstant
M = –153,726s
N= –66,817s = –1002,26″
a = –41´ 54,28″
b = –23,51″
c = 5° 0´ 10″
s tím rozdílem, že tentokráte index m označuje epochu 1975,0 a hodnoty bez indexu se vztahují k epoše B1950,0.